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PREFACE 

This document is one of series of regional climate descriptions designed to provide input that can be 
used in the development of the National Climate Assessment (NCA). As part of a sustained 
assessment approach, it is intended that these documents will be updated as new and well-vetted 
model results are available and as new climate scenario needs become clear. It is also hoped that 
these documents (and associated data and resources) are of direct benefit to decision makers and 
communities seeking to use this information in developing adaptation plans. 
 
There are nine reports in this series, one each for eight regions defined by the NCA, and one for the 
contiguous U.S. The eight NCA regions are the Northeast, Southeast, Midwest, Great Plains, 
Northwest, Southwest, Alaska, and Hawai‘i/Pacific Islands. 
 
These documents include a description of the observed historical climate conditions for each region 
and a set of climate scenarios as plausible futures – these components are described in more detail 
below. 
 
While the datasets and simulations in these regional climate documents are not, by themselves, new, 
(they have been previously published in various sources), these documents represent a more 
complete and targeted synthesis of historical and plausible future climate conditions around the 
specific regions of the NCA. 
 
There are two components of these descriptions. One component is a description of the historical 
climate conditions in the region. The other component is a description of the climate conditions 
associated with two future pathways of greenhouse gas emissions. 
 
Historical Climate 
The description of the historical climate conditions was based on an analysis of core climate data 
(the data sources are available and described in each document). However, to help understand, 
prioritize, and describe the importance and significance of different climate conditions, additional 
input was derived from climate experts in each region, some of whom are authors on these reports. 
In particular, input was sought from the NOAA Regional Climate Centers and from the American 
Association of State Climatologists. The historical climate conditions are meant to provide a 
perspective on what has been happening in each region and what types of extreme events have 
historically been noteworthy, to provide a context for assessment of future impacts. 
 
Future Scenarios 
The future climate scenarios are intended to provide an internally consistent set of climate 
conditions that can serve as inputs to analyses of potential impacts of climate change. The scenarios 
are not intended as projections as there are no established probabilities for their future realization. 
They simply represent an internally consistent climate picture using certain assumptions about the 
future pathway of greenhouse gas emissions. By “consistent” we mean that the relationships among 
different climate variables and the spatial patterns of these variables are derived directly from the 
same set of climate model simulations and are therefore physically plausible. 
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These future climate scenarios are based on well-established sources of information. No new 
climate model simulations or downscaled data sets were produced for use in these regional climate 
reports. 
 
The use of the climate scenario information should take into account the following considerations: 
1. All of the maps of climate variables contain information related to statistical significance of 

changes and model agreement. This information is crucial to appropriate application of the 
information. Three types of conditions are illustrated in these maps: 
a. The first condition is where most or all of the models simulate statistically significant 

changes and agree on the direction (whether increasing or decreasing) of the change. If this 
condition is present, then analyses of future impacts and vulnerabilities can more confidently 
incorporate this direction of change. It should be noted that the models may still produce a 
significant range of magnitude associated with the change, so the manner of incorporating 
these results into decision models will still depend to a large degree on the risk tolerance of 
the impacted system. 

b. The second condition is where the most or all of the models simulate changes that are too 
small to be statistically significant. If this condition is present, then assessment of impacts 
should be conducted on the basis that the future conditions could represent a small change 
from present or could be similar to current conditions and that the normal year-to-year 
fluctuations in climate dominate over any underlying long-term changes. 

c. The third condition is where most or all of the models simulate statistically significant 
changes but do not agree on the direction of the change, i.e. a sizeable fraction of the models 
simulate increases while another sizeable fraction simulate decreases. If this condition is 
present, there is little basis for a definitive assessment of impacts, and, separate assessments 
of potential impacts under an increasing scenario and under a decreasing scenario would be 
most prudent. 

2. The range of conditions produced in climate model simulations is quite large. Several figures 
and tables provide quantification for this range. Impacts assessments should consider not only 
the mean changes, but also the range of these changes. 

3. Several graphics compare historical observed mean temperature and total precipitation with 
model simulations for the same historical period. These should be examined since they provide 
one basis for assessing confidence in the model simulated future changes in climate. 
a. Temperature Changes: Magnitude. In most regions, the model simulations of the past 

century simulate the magnitude of change in temperature from observations; the southeast 
region being an exception where the lack of century-scale observed warming is not 
simulated in any model. 

b. Temperature Changes: Rate. The rate of warming over the last 40 years is well simulated in 
all regions. 

c. Precipitation Changes: Magnitude. Model simulations of precipitation generally simulate the 
overall observed trend but the observed decade-to-decade variations are greater than the 
model observations. 
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In general, for impacts assessments, this information suggests that the model simulations of 
temperature conditions for these scenarios are likely reliable, but users of precipitation simulations 
may want to consider the likelihood of decadal-scale variations larger than simulated by the models. 
It should also be noted that accompanying these documents will be a web-based resource with 
downloadable graphics, metadata about each, and more information and links to the datasets and 
overall descriptions of the process.  



 
 4 

1. INTRODUCTION ..................................................................................................................................... 5 

2. REGIONAL CLIMATE TRENDS AND IMPORTANT CLIMATE FACTORS ............................ 10 
2.1. GENERAL DESCRIPTION OF THE PACIFIC ISLANDS CLIMATE ............................................................. 10 

2.1.1. Central North Pacific .................................................................................................................. 10 
2.1.2. Western North Pacific ................................................................................................................. 11 
2.1.3. Central South Pacific .................................................................................................................. 12 

2.2. IMPORTANT CLIMATE FACTORS ........................................................................................................ 12 
2.2.1. North Pacific High/Trade Winds ................................................................................................ 12 
2.2.2. Intertropical Convergence Zone ................................................................................................. 12 
2.2.3. Tropical Cyclones ....................................................................................................................... 13 
2.2.4. South Pacific Convergence Zone ................................................................................................ 13 
2.2.5. El Niño-Southern Oscillation ...................................................................................................... 13 

2.3. CLIMATIC TRENDS ............................................................................................................................. 15 
2.3.1. Central North Pacific: Hawai‘i .................................................................................................. 15 
2.3.2. Western North Pacific: West (Guam, Palau, FSM (Yap, Chuuk), CNMI); East (FSM (Pohnpei, 
Kosrae), RMI) .......................................................................................................................................... 20 
2.3.3. Central South Pacific: American Samoa .................................................................................... 24 

3. FUTURE REGIONAL CLIMATE SCENARIOS ............................................................................... 26 
3.1. DESCRIPTION OF DATA SOURCES ...................................................................................................... 26 
3.2. MEAN TEMPERATURE ........................................................................................................................ 27 
3.3. MEAN PRECIPITATION ........................................................................................................................ 29 
3.4. MODEL SIMULATIONS RELATING TO ENSO ....................................................................................... 34 

4. SUMMARY ............................................................................................................................................. 36 

5. REFERENCES ........................................................................................................................................ 38 

6. ACKNOWLEDGEMENTS .................................................................................................................... 44 

 



 
 5 

1. INTRODUCTION 

The Global Change Research Act of 19901 mandated that national assessments of climate change be 
prepared not less frequently than every four years. The last national assessment was published in 
2009 (Karl et al. 2009). To meet the requirements of the act, the Third National Climate Assessment 
(NCA) report is now being prepared. The National Climate Assessment Development and Advisory 
Committee (NCADAC), a federal advisory committee established in the spring of 2011, will 
produce the report. The NCADAC Scenarios Working Group (SWG) developed a set of 
specifications with regard to scenarios to provide a uniform framework for the chapter authors of 
the NCA report. 
 
This climate document was prepared to provide a resource for authors of the Third National Climate 
Assessment report, pertinent to the state of Hawai‘i and the United States-Affiliated Pacific Islands 
(US-API); hereafter referred to collectively as the Pacific Islands. The specifications of the 
NCADAC SWG, along with anticipated needs for historical information, guided the choices of 
information included in this description of Pacific Islands’ climate. While guided by these 
specifications, the material herein is solely the responsibility of the authors and usage of this 
material is at the discretion of the 2013 NCA report authors. 
 
This document has two main sections: one on historical conditions and trends, and the other on 
future conditions as simulated by climate models. The historical section concentrates on 
temperature and precipitation, primarily based on analyses of data from the National Weather 
Service’s (NWS) Cooperative Observer Network, which has been in operation since the late 19th 
century. Additional climate features are discussed based on the availability of information. The 
future simulations section is exclusively focused on temperature and precipitation.  
 
With regard to the future, the NCADAC, at its May 20, 2011 meeting, decided that scenarios should 
be prepared to provide an overall context for assessment of impacts, adaptation, and mitigation, and 
to coordinate any additional modeling used in synthesizing or analyzing the literature. Scenario 
information for climate, sea-level change, changes in other environmental factors (such as land 
cover), and changes in socioeconomic conditions (such as population growth and migration) have 
been prepared. This document provides an overall description of the climate information.  
 
In order to complete this document in time for use by the NCA report authors, it was necessary to 
restrict its scope in the following ways. Firstly, this document does not include a comprehensive 
description of all climate aspects of relevance and interest to a national assessment. We restricted 
our discussion to climate conditions for which data were readily available. Secondly, the choice of 
climate model simulations was also restricted to readily available sources. Lastly, the document 
does not provide a comprehensive analysis of climate model performance for historical climate 
conditions, although a few selected analyses are included. 
 
The NCADAC directed the “use of simulations forced by the A2 emissions scenario as the primary 
basis for the high climate future and by the B1 emissions scenario as the primary basis for the low 
climate future for the 2013 report” for climate scenarios. These emissions scenarios were generated 
by the Intergovernmental Panel on Climate Change (IPCC) and are described in the IPCC Special 
Report on Emissions Scenarios (SRES) (IPCC 2000). These scenarios were selected because they 
                                                       
1 http://thomas.loc.gov/cgi-bin/bdquery/z?d101:SN00169:|TOM:/bss/d101query.html 

http://thomas.loc.gov/cgi-bin/bdquery/z?d101:SN00169:|TOM:/bss/d101query.html
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incorporate much of the range of potential future human impacts on the climate system and because 
there is a large body of literature that uses climate and other scenarios based on them to evaluate 
potential impacts and adaptation options. These scenarios represent different narrative storylines 
about possible future social, economic, technological, and demographic developments. These SRES 
scenarios have internally consistent relationships that were used to describe future pathways of 
greenhouse gas emissions. The A2 scenario “describes a very heterogeneous world. The underlying 
theme is self-reliance and preservation of local identities. Fertility patterns across regions converge 
very slowly, which results in continuously increasing global population. Economic development is 
primarily regionally oriented and per capita economic growth and technological change are more 
fragmented and slower than in the other storylines” (IPCC 2000). The B1 scenario describes “a 
convergent world with…global population that peaks in mid-century and declines thereafter…but 
with rapid changes in economic structures toward a service and information economy, with 
reductions in material intensity, and the introduction of clean and resource-efficient technologies. 
The emphasis is on global solutions to economic, social, and environmental sustainability, including 
improved equity, but without additional climate initiatives” (IPCC 2000). 
 
The temporal changes of emissions under these two scenarios are illustrated in Fig. 1 (left panel). 
Emissions under the A2 scenario continually rise during the 21st century from about 40 gigatons 
(Gt) CO2-equivalent per year in the year 2000 to about 140 Gt CO2-equivalent per year by 2100. By 
contrast, under the B1 scenario, emissions rise from about 40 Gt CO2-equivalent per year in the year 
2000 to a maximum of slightly more than 50 Gt CO2-equivalent per year by mid-century, then 
falling to less than 30 Gt CO2-equivalent per year by 2100. Under both scenarios, CO2 
concentrations rise throughout the 21st century. However, under the A2 scenario, there is an 
acceleration in concentration trends, and by 2100 the estimated concentration is above 800 ppm. 
Under the B1 scenario, the rate of increase gradually slows and concentrations level off at about 500 
ppm by 2100. An increase of 1 ppm is equivalent to about 8 Gt of CO2. The increase in 
concentration is considerably smaller than the rate of emissions because a sizeable fraction of the 
emitted CO2 is absorbed by the oceans. 
 
The projected CO2 concentrations are used to estimate the effects on the earth’s radiative energy 
budget, and this is the key forcing input used in global climate model simulations of the future. 
These simulations provide the primary source of information about how the future climate could 
evolve in response to the changing composition of the earth’s atmosphere. A large number of 
modeling groups performed simulations of the 21st century in support of the IPCC’s Fourth 
Assessment Report (AR4), using these two scenarios. The associated changes in global mean 
temperature by the year 2100 (relative to the average temperature during the late 20th century) are 
about +6.5°F (3.6°C) under the A2 scenario and +3.2°F (1.8°C) under the B1 scenario with 
considerable variations among models (Fig. 1, right panel). 
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Figure 1. Left Panel: Global GHG emissions (in GtCO2-eq) in the absence of climate policies: six illustrative 
SRES marker scenarios (colored lines) and the 80th percentile range of recent scenarios published since 
SRES (post-SRES) (gray shaded area). Dashed lines show the full range of post-SRES scenarios. The 
emissions include CO2, CH4, N2O and F-gases. Right Panel: Solid lines are multi-model global averages of 
surface warming for scenarios A2, A1B and B1, shown as continuations of the 20th-century simulations. 
These projections also take into account emissions of short-lived GHGs and aerosols. The pink line is not a 
scenario, but is for Atmosphere-Ocean General Circulation Model (AOGCM) simulations where 
atmospheric concentrations are held constant at year 2000 values. The bars at the right of the figure indicate 
the best estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios 
at 2090-2099. All temperatures are relative to the period 1980-1999. From IPCC AR4, Sections 3.1 and 3.2, 
Figures 3.1 and 3.2, IPCC (2007b). 
 
 
In addition to the direct output of the global climate model simulations, the NCADAC approved 
“the use of both statistically- and dynamically-downscaled data sets”. “Downscaling” refers to the 
process of producing higher-resolution simulations of climate from the low-resolution outputs of the 
global models. The motivation for use of these types of data sets is the spatial resolution of global 
climate models. While the spatial resolution of available global climate model simulations varies 
widely, many models have resolutions in the range of 100-200 km (~60-120 miles). Such scales are 
very large compared to local and regional features important to many applications. For example, at 
these scales mountain ranges are not resolved sufficiently to provide a reasonably accurate 
representation of the sharp gradients in temperature, precipitation, and wind that typically exist in 
these areas. 
 
Statistical downscaling achieves higher-resolution simulations through the development of 
statistical relationships between large-scale atmospheric features that are well-resolved by global 
models and the local climate conditions that are not well-resolved. The statistical relationships are 
developed by comparing observed local climate data with model simulations of the recent historical 
climate. These relationships are then applied to the simulations of the future to obtain local high-
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resolution projections. Statistical downscaling approaches are relatively economical from a 
computational perspective, and thus they can be easily applied to many global climate model 
simulations. One underlying assumption is that the relationships between large-scale features and 
local climate conditions in the present climate will not change in the future (Wilby and Wigley 
1997). Careful consideration must also be given when deciding how to choose the appropriate 
predictors because statistical downscaling is extremely sensitive to the choice of predictors (Norton 
et al. 2011). 
 
Dynamical downscaling is much more computationally intensive but avoids assumptions about 
constant relationships between present and future. Dynamical downscaling uses a climate model, 
similar in most respects to the global climate models. However, the climate model is run at a much 
higher resolution but only for a small region of the earth (such as North America) and is termed a 
“regional climate model (RCM)”. A global climate model simulation is needed to provide the 
boundary conditions (e.g., temperature, wind, pressure, and humidity) on the lateral boundaries of 
the region. Typically, the spatial resolution of an RCM is 3 or more times higher than the global 
model used to provide the boundary conditions. With this higher resolution, topographic features 
and smaller-scale weather phenomena are better represented. The major downside of dynamical 
downscaling is that a simulation for a region can take as much computer time as a global climate 
model simulation for the entire globe. As a result, the availability of such simulations is limited, 
both in terms of global models used for boundary conditions and time periods of the simulations 
(Hayhoe 2010). 
 
Section 3 of this document (Future Regional Climate Scenarios) responds to the NCADAC 
directives by incorporating analyses from multiple sources. The core source is the set of global 
climate model simulations performed for the IPCC AR4, also referred to as the Climate Model 
Intercomparison Project phase 3 (CMIP3) suite. These have undergone extensive evaluation and 
analysis by many research groups. A second source is a set of statistically-downscaled data sets 
based on the CMIP3 simulations. A third source is a set of dynamically-downscaled simulations, 
driven by CMIP3 models. A new set of global climate model simulations is being generated for the 
IPCC Fifth Assessment Report (AR5). This new set of simulations is referred to as the Climate 
Model Intercomparison Project phase 5 (CMIP5). These scenarios do not incorporate any CMIP5 
simulations as relatively few were available at the time the data analyses were initiated. 
As noted earlier, the information included in this document is primarily concentrated around 
analyses of temperature and precipitation. This is explicitly the case for the future scenarios 
sections; due in large part to the short time frame and limited resources, we capitalized on the work 
of other groups on future climate simulations, and these groups have devoted a greater effort to the 
analysis of temperature and precipitation than other surface climate variables.  
 
Climate models have generally exhibited a high level of ability to simulate the large-scale 
circulation patterns of the atmosphere. These include the seasonal progression of the position of the 
jet stream and associated storm tracks, the overall patterns of temperature and precipitation, the 
occasional occurrence of droughts and extreme temperature events, and the influence of geography 
on climatic patterns. There are also important processes that are less successfully simulated by 
models, as noted by the following selected examples. 
 
Climate model simulation of clouds is problematic. Probably the greatest uncertainty in model 
simulations arises from clouds and their interactions with radiative energy fluxes (Dufresne and 
Bony 2008). Uncertainties related to clouds are largely responsible for the substantial range of 
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global temperature change in response to specified greenhouse gas forcing (Randall et al. 2007). 
Climate model simulation of precipitation shows considerable sensitivities to cloud 
parameterization schemes (Arakawa 2004). Cloud parameterizations remain inadequate in current 
GCMs. Consequently, climate models have large biases in simulating precipitation, particularly in 
the tropics. Models typically simulate too much light precipitation and too little heavy precipitation 
in both the tropics and middle latitudes, creating potential biases when studying extreme events 
(Bader et al. 2008). 
 
Climate models also have biases in simulation of some important climate modes of variability. The 
El Niño-Southern Oscillation (ENSO) is a prominent example. In some parts of the U.S., El Niño 
and La Niña events make important contributions to year-to-year variations in conditions. Climate 
models have difficulty capturing the correct phase locking between the annual cycle and ENSO 
(AchutaRao and Sperber 2002). Some climate models also fail to represent the spatial and temporal 
structure of the El Niño - La Niña asymmetry (Monahan and Dai 2004). Climate simulations over 
the U.S. are affected adversely by these deficiencies in ENSO simulations.  
 
The model biases listed above add additional layers of uncertainty to the information presented 
herein and should be kept in mind when using the climate information in this document. 
 
The representation of the results of the suite of climate model simulations has been a subject of 
active discussion in the scientific literature. In many recent assessments, including AR4, the results 
of climate model simulations have been shown as multi-model mean maps (e.g., Figs. 10.8 and 10.9 
in Meehl et al. 2007). Such maps give equal weight to all models, which is thought to better 
represent the present-day climate than any single model (Overland et al. 2011). However, models do 
not represent the current climate with equal fidelity. Knutti (2010) raises several issues about the 
multi-model mean approach. These include: (a) some model parameterizations may be tuned to 
observations, which reduces the spread of the results and may lead to underestimation of the true 
uncertainty; (b) many models share code and expertise and thus are not independent, leading to a 
reduction in the true number of independent simulations of the future climate; (c) all models have 
some processes that are not accurately simulated, and thus a greater number of models does not 
necessarily lead to a better projection of the future; and (d) there is no consensus on how to define a 
metric of model fidelity, and this is likely to depend on the application. Despite these issues, there is 
no clear superior alternative to the multi-model mean map presentation for general use. Tebaldi et 
al. (2011) propose a method for incorporating information about model variability and consensus. 
This method is adopted here where data availability make it possible. In this method, multi-model 
mean values at a grid point are put into one of three categories: (1) models agree on the statistical 
significance of changes and the sign of the changes; (2) models agree that the changes are not 
statistically significant; and (3) models agree that the changes are statistically significant but 
disagree on the sign of the changes. The details on specifying the categories are included in Section 
3.
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2. REGIONAL CLIMATE TRENDS AND IMPORTANT CLIMATE 
FACTORS 

2.1. General Description of the Pacific Islands Climate 

The Pacific Islands region extends from about 155°W to 130°E longitude and about 15°S to 25°N 
(Fig. 2). Due to its low-latitude location in the tropics, this region experiences relatively small 
seasonal variation in the energy received from the sun. This translates into a small annual air 
temperature range: across the region, there is only a 2-6°F difference between the warmest and 
coolest months. In contrast, precipitation varies greatly by both season and location. While the 
islands of the region all have distinct wet and dry seasons that loosely correspond to winter and 
summer months, the timing, duration, and intensity of these depends on a variety of sub-regional 
factors. 
 

2.1.1. Central North Pacific 
The warmest month in Hawai‘i is August, with an average temperature of about 78°F; the coldest, 
February, averages around 72°F. Major geographic variations in temperature are due to high 
elevation. In the winter, the peaks of Mauna Kea and Mauna Loa can be covered with snow, with 
temperatures as low as 5°F. At elevations below 1,000 feet, however, nighttime lows rarely fall 
below the 50’s. Hawai‘i also shows striking geographic variation in rainfall. Annual rainfall 
averages can exceed 300 inches along the windward slopes of mountains, while in leeward coastal 
areas and on the upper slopes of the highest mountains, annual rainfall averages less than 20 inches 
(WRCC 2012). 
 
The weather of Hawai‘i is shaped by its proximity to the North Pacific High, a semi-permanent 
high-pressure area centered on 30°– 40°N and 140°–150°W, and its associated northeast trade 
winds. Trade wind conditions dominate from April to October, during which time the winds blow 
70% of the time at speeds ranging from 10-25 miles per hour. These winds are accompanied by 
frequent light-to-moderate showers, due to the cumulus clouds being advected from the subtropical 
high. Regions of maximum rainfall are usually located on northeast, windward slopes where 
orographic uplifting is most pronounced, while showers are suppressed on southwestern leeward 
slopes as the air warms and sinks (NOAA 2012a). 
 
Increased rainfall and storminess characterizes the Hawaiian winter. "Kona" Storms can generate 
widespread heavy rain and wind that last for days, as well as intense local showers for several 
hours. Kona storms are cut-off lows in the upper level subtropical Westerlies that usually occur to 
the north of Hawaii, and are associated with surface lows (NOAA 2012a).  
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Figure 2. Map of the Pacific Islands region and sub-regions. The region includes the Hawaiian archipelago 
and the US-Affiliated Pacific Islands, and comprises the Central North Pacific (CNP, blue), Western North 
Pacific (WNP, light orange), Central South Pacific (CSP, light green), and the islands of the Pacific Remote 
Island Marine National Monument (dark orange). Shaded areas indicate each island’s exclusive economic 
zone (EEZ). From Keener et al. (2012). 
 
 
2.1.2. Western North Pacific 
While warmest and coolest months can vary by location in the sub-region, there is a 5°F or less 
difference between the warmest and coolest months in each state. Similar to Hawai‘i, geographic 
temperature variations can occur due to elevation, in that higher peaks of volcanic islands have 
lower temperatures. However, a different effect of elevation is felt by the smallest atoll islands in 
this sub-region, in that their temperature is affected strongly by sea surface temperature. For 
example, on Pohnpei the highest maximum and lowest minimum temperatures occur during the 
months of August-November. During the same months on Yap, though, minimum temperatures are 
consistent throughout the year, while maximum temperatures are highest in April-May (Australian 
Bureau of Meteorology and CSIRO 2011).  
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2.1.3. Central South Pacific 
In this sub-region, the coolest month of the year is July, warmest month is March In Samoa, about 
50 miles west of American Samoa, the difference in average temperature between these two months 
is 1.5°F (Australian Bureau of Meteorology and CSIRO 2011). American Samoa’s weather is 
shaped primarily by the Southern Hemisphere trade winds and the South Pacific Convergence Zone. 
Trade wind conditions dominate from May to October, though the winds originate from subtropical 
high-pressure areas in the Southern Hemisphere instead of the North Pacific High.  
 
2.2. Important Climate Factors 

Climate phenomena that have major societal impacts in the Pacific Islands include: 
 

2.2.1. North Pacific High/Trade Winds 
During the summer, the North Pacific High reaches its largest spatial extent and northernmost 
position. Trade wind frequency increases correspondingly, as does frequency of Trade wind 
showers. From October to March, the North Pacific High is diminished, and the Trade wind flow 
becomes less pronounced. As a result, tropical cyclones, Kona storms, and major storm systems due 
to cold fronts and upper level lows approach the islands from the west. 
 
The weather in the Western North Pacific sub-region is also shaped by its proximity to the North 
Pacific High and associated trade winds, and the monsoon trough (a local manifestation of the 
Intertropical Convergence Zone). Trade wind conditions dominate the Western North Pacific sub-
region from December to June. The winds are stronger and last longer in the northern and eastern 
parts of the sub-region (closest to their origin in the North Pacific High) where they can also 
generate high surf due to their long fetch distances from Hawai‘i (NOAA 2012b). The trade wind 
frequency is similar to that of Hawai‘i (about 75% of the time). Unlike Hawai‘i, though, the winds 
are more persistent during the winter months and less so during the summer months, when the 
monsoon trough expands, creating strong winds from the southwest (Kodama and Businger 1998). 
These gusty winds can last for multiple days, sometimes 1-2 weeks. The winds are more persistent 
in Palau and the southwest parts of the sub-region, episodic on Guam, and rarely felt in the Marshall 
Islands to the northeast (Bridgman and Oliver 2006; NOAA 2012b). 
 

2.2.2. Intertropical Convergence Zone 
The monsoon trough causing these trade winds is a stormy low-pressure system that arises due to 
differential heat absorption between the Asian continent and ocean. It is effectively a local, seasonal 
manifestation of the Intertropical Convergence Zone (ITCZ), which is a continual belt of low 
pressure near the equator. The position of the ITCZ varies seasonally, and from May to October, it 
moves through the Western North Pacific sub-region, bringing each island its rainy season. The 
northern parts of the sub-region (Guam and Mariana Islands) experience a dry season that is longer 
and drier, because of their proximity to the North Pacific High and trade winds. An active monsoon 
season strengthens the trough/ITCZ bringing additional rainfall to the western parts of the sub-
region: Palau and the western islands in the Federated States of Micronesia (FSM) are most 
affected, while the Republic of the Marshall Islands (RMI) are only affected some years. The 
average annual rainfall across the sub-region ranges from 96 to 160 inches (Lander 2004; Australian 
Bureau of Meteorology and CSIRO 2011). 
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2.2.3. Tropical Cyclones 
Monsoon trough activity is what makes the Western North Pacific sub-region the most active 
tropical cyclone basin, with an annual average of 25-26 cyclones reaching tropical storm strength or 
higher (Knapp, et al 2010) over the 30-year period from 1981-2010. These storms develop most 
commonly between July and December, and their frequency peaks in August, though they are 
possible throughout the year. Typhoons can lead to flooding, wind damage, coastal inundation, and 
reef erosion (NOAA 2012b). 
 
There has been a shift in the occurrence of typhoons across the North West Pacific basin with far 
fewer storms occurring in the latter period from 1990-2010 compared to the period from1970-1990. 
This observation is quite consistent with the findings in other basins over this same time period. The 
increased proportion of major TCs in a basin with fewer overall TCs is quite consistent with 
findings by Webster et al. (2005), as well as by Maue (2011), and Diamond et al. (2012). 
 
Tropical cyclones are also the primary form of extreme precipitation events in the Central South 
Pacific, where an average of 10-11 named storms occur based on a 41-year average from 1970-2010 
(Diamond et al. 2012). Diamond et al. (2012) also noted that in this basin there were 83 major TCs 
that developed out of a total of 298 storms (27.9%) during the period 1970-1990, while from 1991-
2010 there were 86 major TCs out of a total of 234 storms (36.7%). The increased proportion of 
major TCs over the past 20 years is statistically significant (p < 0.005, t-test with 19 degrees of 
freedom). Furthermore, of the 21 Category 5 storms that occurred in the region during that time, 
nearly 85% of them occurred during 1991-2010. The increased proportion of major TCs in a basin 
with fewer overall TCs is quite consistent with findings by Webster et al. (2005), as well as Maue 
(2011). For the entire period from 1970-2010, the area of greatest TC occurrence is west of the 
International Dateline in the areas around Vanuatu, New Caledonia, and Fiji. 
 

2.2.4. South Pacific Convergence Zone 
The South Pacific Convergence Zone (SPCZ) is a persistent band of cloudiness and storms, similar 
to the ITCZ, that originates in Southeast Asia and stretches southeast to French Polynesia. It is 
fueled by moisture from the warm western Pacific basin, and is most active from October to April 
(during the Southern Hemisphere summer) due to propagated monsoon activity from India (Vincent 
1994). 
 
Rainfall varies greatly by season in the Central South Pacific sub-region: approximately 75% of 
annual rainfall occurs from November to April, when the SPCZ is located about halfway between 
Western Samoa and Fiji. During the dry season, the SPCZ moves out of the area, and often becomes 
weak or inactive (Australian Bureau of Meteorology and CSIRO 2011).  
 

2.2.5. El Niño-Southern Oscillation 
The previous sections described the “normal” weather and climate across the Pacific Islands region 
in terms of local effects of large-scale atmospheric processes involving the North Pacific High, the 
trade winds, the ITCZ and SPCZ, and the East Asian and Western Pacific monsoon system. 
However, the atmospheric processes in this region are never in exact equilibrium, so variability in 
their local effects is inevitable. The El Niño-Southern Oscillation (ENSO) is an example of this 
variability on an interannual scale. 
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ENSO is a natural cycle of the climate system, recurring every 3-7 years and resulting from coupled 
ocean-atmosphere interaction. The tropical Pacific is notable for the large interannual variability of 
SST, surface winds, and rainfall connected with the ENSO phenomenon. The two extreme phases of 
this cycle are El Niño and La Niña. An El Niño phase is characterized by decreased trade wind 
activity, which allows the warm waters gathered by the winds into the west Pacific to flow 
eastward. This warm water, in turn, brings its associated cloudiness and rainfall. During the La Niña 
phase, this pattern is reversed: stronger trade winds allow the cold east Pacific to become larger. 
The effects of this cycle on the Pacific Islands region are significant, and help explain the large 
year-to-year variability in rainfall and other climatic variables (Chu 1995; Chu and Chen 2005; 
Giambelluca et al. 2011).  
 
The large-scale ENSO variations have substantial effects on the interannual variations of rainfall 
seen in individual islands. Among the US-API, Yap, Palau, Chuuk, Guam, and the Northern 
Marianas Islands all share in the anomalously dry (wet) weather on average in the Western 
equatorial Pacific during the El Niño (La Niña) extremes of the Southern Oscillation. Hawai‘i and 
Guam are located more centrally in the Pacific but also have observed correlations between 
seasonal rainfall and the state of ENSO, with El Niño generally being connected with anomalous 
dry weather in Hawai‘i and wet weather in Samoa. The significant control of seasonal rainfall over 
these islands by ENSO suggests that long term changes in the Pacific basin-scale SST gradients and 
the Walker circulation will play a critical role in determining the mean rainfall changes on each of 
the islands. The Pacific Islands sub-regions are generally affected in the following ways: 
 
2.2.5.1. Central North Pacific 
Weakened trade wind during an El Niño event reduces rainfall, and causes dry conditions 
throughout the Hawaiian Islands (Chu and Chen 2005; Cao et al. 2007; Garza et al. 2012). 
 
2.2.5.2. Western North Pacific 
Weakened trade wind and loss of cloudiness/rainfall associated with warm water basin during an El 
Niño event leads to very dry conditions. Despite high annual rainfall totals, extended periods of dry 
conditions can endanger life. Frequency and intensity of subtropical cyclones (typhoons) are also 
affected by ENSO events (Lander 2004). 
 
2.2.5.3. Central South Pacific 
Location of the SPCZ is shifted during ENSO events, causing heavy rainfall or dry conditions 
(Australian Bureau of Meteorology and CSIRO 2011). 
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2.3. Climatic Trends 

To fully assess the impact of climate variability and change and accurately predict future conditions 
in each sub-region, it is necessary to understand current and historic trends in climate and 
hydrologic records. For each sub-region, trends in observed data are discussed for three general 
types of records: temperature, rainfall, and extreme precipitation. Records such as temperature and 
rainfall are direct indicators of trends in climate. From these basic records, information on extreme 
precipitation events such as droughts or large storms can be extracted to provide important insight 
on how climate change can affect water resources. A common measure for drought is “consecutive 
dry days”; measures for extremely high precipitation include the frequency of high and moderate-
intensity events, the frequency of typhoons and other storms, and the total rainfall over a specified 
number of consecutive rainy days. 
 

2.3.1. Central North Pacific: Hawai‘i 
2.3.1.1. Temperature 
Generally, air temperature has increased significantly throughout the state of Hawai‘i at both high 
and low elevations over the last century (Giambelluca et al. 2008). From 1919 to 2006, average 
temperature for stations in Hawai‘i increased by 0.07°F per decade (Fig. 3). The rate of warming 
has accelerated to 0.11°F per decade in the last four decades. This statewide trend is only slightly 
lower than the global average trend of 0.13°F per decade from 1906 to 2005 (IPCC et al. 2007). The 
rate of increasing temperature is greater on high-elevation stations (0.13°F per decade at greater 
than 0.5 miles above sea level) (Fig. 3) and has been documented on the ecologically sensitive 
peaks of Haleakalā and Mauna Loa on Maui and Hawai‘i Island, respectively, where the annual 
number of below-freezing days has decreased from 1958 to 2009 (Giambelluca et al. 2008; Diaz et 
al. 2011).  
 
Much of the temperature variation prior to 1975 in Hawai‘i appears to have been tightly coupled to 
the Pacific Decadal Oscillation (PDO) (Giambelluca et al. 2008). Since 1975, however, temperature 
in Hawai‘i has diverged increasingly from the PDO (Fig. 4), which may indicate the increased 
influence of global warming (Giambelluca et al. 2008). Temperature data are consistent with an 
increase in the frequency of occurrence of the trade wind inversion (TWI) ) and a drop in trade-
wind frequency over Hawai‘i since the late 1970s (Fig. 5) (Cao et al. 2007; Garza et al. 2012), 
which is in turn consistent with continued warming and drying trends throughout Hawai‘i, 
especially on high-elevation ecosystems. 
 
2.3.1.2. Precipitation 
In Hawai‘i, precipitation can manifest as rainfall, fog, hail, and snow. Annual precipitation over the 
state is variable, from 8 inches near the summit of Mauna Kea to over 400 inches on the windward 
slope of Haleakalā, Maui (Giambelluca et al. 2011). The dry summer season lasts from May to 
October, while the winter rainy season extends from November to April.   
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Figure 3. Annual average surface temperature anomalies at stations in Hawai‘i (a total of 21). Temperature 
anomalies are calculated first as the departure from the monthly mean, and then averaged into a calendar 
year. Anomalies greater than zero indicate temperatures that are above-average, while anomalies less than 
zero indicate below-average temperatures. A 7-year running-mean filter has been applied to the data to 
create a smoothed trend curve (black curve). Linear trends have been computed for two periods, 1919-2006 
and 1975-2006, where the latter period emphasizes the observed enhanced warming. Temperature anomalies 
are increasing at both high and low-elevation stations. The steeper warming trend in high-elevation stations 
(>800 meters/0.5 mile) is visible in the bottom panel, especially when compared to that of the low-elevation 
stations in the middle panel (<800 meters/0.5 mile). Error bars show a standard deviation range of +/-0.5. 
Thick lines show 7-year running means. Asterisks indicate slopes significant at p = 0.05. Republished with 
permission of the American Geophysical Union, from Giambelluca et al. (2008); permission conveyed 
through Copyright Clearance Center, Inc.  
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Figure 4. The top panel shows the Hawai‘i Temperature Index (red line) and the Pacific Decadal Oscillation 
(PDO) (blue line). Air Temperature prior to 1975 is tightly coupled to the PDO. Since 1975, air temperature 
has diverged increasingly from the observed PDO, which may indicate the increasing influence of climate 
change in the North Central Pacific sub-region. The bottom panel shows the local sea surface temperature 
anomalies (blue line) for 22°N, 156°W (based on the Smith and Reynolds (2004) Extended Reconstructed Sea 
Surface Temperatures (ERSST) data set), and the Hawai‘i Temperature Index (red line). SST anomalies are 
also coupled to air temperatures, and show a similar decoupling around 1975. Republished with permission 
of the American Geophysical Union, from Giambelluca et al. (2008); permission conveyed through 
Copyright Clearance Center, Inc.  
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Figure 5. Trade-wind inversion occurrence over Hilo (green) and Lihu‘e (blue), Hawai‘i. The frequency of 
occurrence of the trade-wind inversion increased during the 1990s from less than 80% to occurring around 
90% of the time. This finding is consistent with current observations of reduced precipitation, especially for 
the high-elevations in Hawai‘i. Figure courtesy of Hawai‘i State Climatologist, Pao-Shin Chu. Data from 
Cao et al. (2007). 
 
 
Although there is great variability in precipitation amounts from one area of an island to another 
and on leeward versus windward sides, a general downward trend statewide over the last century 
has been documented in both observed data and climate models (Fig. 6) (Chu and Chen 2005; Diaz 
et al. 2011; Giambelluca et al. 2011; Timm et al. 2011). This decline in rainfall is consistent with an 
increase in the frequency of occurrence of the TWI, a decline in trade-wind occurrence, and 
corresponding higher rates of warming at high elevations (Cao et al. 2007; Diaz et al. 2011; Garza 
et al. 2012).  

 
As with trends in air temperature, trends in precipitation in the wet season during the last century in 
Hawai‘i were coupled tightly to the PDO until the mid-1970s. Precipitation variability in Hawai‘i is 
also strongly affected by ENSO and the PDO. ENSO-scale patterns affect inter-annual variability 
whereas the PDO affects inter-decadal variability (Chu and Chen 2005). After air temperature and 
PDO diverged in 1975, initial evidence suggests that precipitation trends are following the same 
pattern of decoupling (Frazier et al. 2011) (Fig. 7). Climate change can affect ENSO and PDO 
patterns; this introduces greater uncertainty into future precipitation predictions for Hawai‘i.  
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Figure 6. Annual time series of the Hawai‘i Rainfall Index (HRI) anomalies from 1905 to 2010. Annual 
values (July to June) are used. For example, 2010 refers to the period from July 2010 to June 2011. Nine 
stations from each of three islands (Kaua‘i, O‘ahu, and Hawai‘i) are selected. These 27 stations are 
representative of the spatial variability of rainfall with regard to the direction of the prevailing northeast 
trade winds (i.e., windward and leeward) and to varying elevation levels (i.e., high and low). A 
normalization method is applied to each station to obtain standardized anomalies and the HRI is then 
calculated as the average of all station anomalies from three islands (Chu and Chen 2005). There is a long-
term downward (drying) trend over the last 105 years (Keener et al. 2012). 
 
 

 
 
Figure 7. Pacific Decadal Oscillation (PDO) Index, and precipitation anomalies at stations on four 
Hawaiian Islands in the wet season (November – April) that are smoothed decadally. Anomalies greater than 
zero indicate precipitation that is above-average, while anomalies less than zero indicate below-average 
precipitation. In trends similar to air temperature, precipitation anomalies have followed the same pattern of 
decoupling from the PDO since 1975, most likely as a result of long-term average climate change. 
Republished with permission of Elsevier, from Diaz and Giambelluca (2012); permission conveyed through 
Copyright Clearance Center, Inc.  
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2.3.1.3. Extremes in Precipitation 
To reduce uncertainty in predicting future shifts in regional extreme precipitation, research has been 
done to understand historic trends in extreme precipitation and drought on the Hawaiian Islands. 
Precipitation can be measured both in relative intensity and probability, amount, and total amount 
over consecutive rainy days. Throughout the state, there is a trend toward fewer extremely high 
rainfall events: comparing data from 1950-1979 with data from 1980-2011 shows a significant 
decrease in the frequency of moderate and high precipitation intensity events and a corresponding 
increase in light intensity events, (Chu et al. 2010). Individual islands show different trends, with 
O‘ahu and Kaua‘i showing the greatest increases in extreme precipitation, despite the fact that the 
Central North Pacific region may have entered a period of fewer annual tropical cyclones since the 
mid-1990s (Chu 2002) (Fig. 8). All the major Hawaiian Islands have shown more prolonged 
drought, with an increasing annual maximum number of consecutive dry days from 1950-1979 to 
1980-2011 (Chu et al. 2010) (Fig. 9). 

 

2.3.2. Western North Pacific: West (Guam, Palau, FSM (Yap, Chuuk), CNMI); East (FSM 
(Pohnpei, Kosrae), RMI) 

2.3.2.1. Temperature 
Many of the longest and most complete records of air temperature in the Western North Pacific sub-
region are at airports and military air force bases. While there is at least one station on each major 
island group with a relatively complete and continuous record since 1950, other stations have very 
short records with many gaps. Across all recorded temperatures, however, observed maximum and 
minimum temperatures have exhibited visibly increasing trends over the past 60-years (Figs. 10 and 
11) (Kruk and Marra 2012; Lander and Guard 2003; Lander and Khosrowpanah 2004; Lander 
2004). The large interannual variability shown in Figs. 10 and 11 is partly related to a strong 
correlation of air temperature with ENSO conditions -- most of the sub-region is cooler than 
average during the El Niño phase of ENSO and warmer during the La Niña phase. The westernmost 
FSM island groups of Yap and Palau, as well as Guam show trends which generally track observed 
change in the Northern Hemisphere with increased variability (Fig. 10) (Jones et al. 1999; Brohan et 
al. 2006; Lander and Guard 2003). 
 
The Majuro Weather Office has identified accelerated trends in maximum temperatures in the RMI 
since 1973, with a rise of around 0.25°F over the past 30 years (Jacklick and White 2011). In the 
same 30-year period, trends in minimum temperatures have been increasing more slowly, at about 
0.22°F (Jacklick and White 2011). In both the western and eastern Micronesian island chains, the 
trends in increasing maximum temperatures have fallen since 2000. These declines may have to do 
with shifts in large-scale climate phenomena after the major El Niño event of 1998, as well as 
exhibiting artifacts of station relocation.   
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Figure 8. Time series of tropical cyclones (tropical storms and hurricanes) in the Central North Pacific 
basin from 1966 to 2010. Although there was a period of greater tropical cyclone activity from the 1980s to 
mid-1990s, the basin has again entered a quieter time, with fewer average annual occurrences of storms. 
Broken lines denote the means for the periods 1966-81, 1982-94, and 1995-2010. Data from Chu (2002), 
figure from Keener et al. (2012). 
 
 

 
Figure 9. Drought trends for Hawai‘i. All four major Hawaiian Islands (O‘ahu, Kaua‘i, Maui and Hawai‘i 
Island) have experienced increasing winter drought since the 1950s, defined by a longer annual maximum 
number of consecutive dry days. Upward (downward) triangles denote the increasing (decreasing) direction 
of drought trends. Black (gray) triangles indicate trends significant at the 5% (10%) level. Republished with 
permission of the American Meteorological Society, from Chu et al. (2010); permission conveyed through 
Copyright Clearance Center, Inc.  
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Figure 10. Maximum monthly temperature anomaly time series from 1952 to 2012 for single monitoring 
stations with the most data in Yap, Guam, and Palau. The Northern Hemisphere temperature time series 
(purple line, Hadley CRU NH) is superimposed for comparison. Trends in maximum temperatures in the 
Western region of the Western North Pacific sub-region appear to be increasing at the same general rate as 
average Northern Hemisphere temperatures (Keener et al. 2012). Republished with permission of the 
American Meteorological Society, updated from Guard and Lander (2012); permission conveyed through 
Copyright Clearance Center, Inc. 
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Figure 11. Maximum monthly temperature anomaly time series from 1952 to 2012 for single monitoring 
stations with the most data in Kwajalein and Majuro in the RMI. The Northern Hemisphere temperature time 
series (purple line, Hadley CRU NH) is superimposed for comparison. Trends in maximum temperatures in 
the Eastern region of the Western North Pacific sub-region have high-levels of variability, and may reflect 
issues in the quality of the data or station infrastructure (Keener et al. 2012).   

https://www.ametsoc.org/PUBS/copyrightinfo/ams_copyright_policy_2010.pdf
https://www.ametsoc.org/PUBS/copyrightinfo/ams_copyright_policy_2010.pdf
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2.3.2.2. Precipitation 
Islands throughout the Western North Pacific tend to receive abundant rainfall. Islands at lower 
latitudes such as Chuuk, Pohnpei, Kosrae and some atolls in the RMI receive over 118 inches of 
rainfall annually, which is stored in catchments as an important source of drinking and irrigation 
water (Lander and Khosrowpanah 2004; Bailey and Jenson 2011). There is a wet season and a dry 
season on all islands, with the relative length and intensity of each season depending on latitude (Yu 
et al. 1997). The more northward the placement of the island, the longer and drier the dry season 
tends to be. As with the variability in air temperature, ENSO has a strong effect on precipitation in 
Micronesia, with strong El Niño events corresponding closely with an increased risk for drought in 
the following year. Eastern islands in the sub-region such as Majuro and Kwajalein show a 
statistically significant drying trend from 1954 to 2011, such that over the last 60-years, these 
islands have lost nearly 15 percent of their annual rainfall, while western islands in the sub-region 
show a slight tendency towards wetter conditions (Fig. 12) (Bailey and Jenson 2011; Jacklick and 
White 2011). On the westernmost islands such as Palau and Yap, precipitation shows upward 
trends, but the trends are not statistically significant (Kruk and Marra 2012). 
 
2.3.2.3. Extremes in Precipitation 
Although islands in the Western North Pacific sub-region have large amounts of rainfall annually, 
drought is a serious issue throughout Micronesia because of limited storage capacity and small 
groundwater supplies. Like Hawaii (Chu 1995), drought tends to be the most extreme during the 
winter and spring months following an El Niño. There is limited research on trends in extreme 
precipitation throughout Micronesia, although some results indicate that since the 1950s there are 
fewer extreme rainfall events greater than 10 inches in 24 hours in Guam and the Commonwealth of 
the Northern Mariana Islands (CNMI) (Lander and Guard 2003; Lander and Khosrowpanah 2004). 
Preliminary region-wide analysis indicates that both summer and winter 1-day amounts of 
precipitation over the 95th percentile have been declining since the early 1900s (Kruk and Marra 
2012). 
 
A more contentious issue for the sub-region is the trend in distribution and frequency of tropical 
cyclones (Knutson et al. 2010). The Western North Pacific Basin is the world’s most prolific 
tropical cyclone basin, with an annual average of 25-26 named storms (Knapp et al 2010)2. Since 
2000, the basin has been very quiet, with only 14 named storms in 2010 and 20 in 2011 (Camargo 
2011 and Camargo 2012). While attribution of an individual tropical cyclone event to climate 
change is not possible, any upward shift in storm frequency in both the Western North Pacific basin 
and other basins around the world have destructive impacts on island nations, as typhoons tend to be 
more intense in El Niño years (Camargo and Sobel 2005), especially in the eastern portions of the 
sub-region. Research into how future climate will affect the frequency and intensity of tropical 
cyclones is of great societal importance for Pacific Islanders’ food and water supply, livelihoods, 
and health (Gualdi et al. 2008; Murakami et al. 2011).   

                                                       
2 This is based on a 30-year climatological average from 1981-2010. 
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Figure 12. Annual rainfall trends (inches per month per decade) in the Western North Pacific sub-region 
from 1950 to 2010. Blue shading indicates wetter, and red shading indicates drier. The size of the dot is 
proportional to the magnitude of the trend as per the inset scale. While islands in the West are tending 
towards getting slightly more precipitation, islands in the East are experiencing larger magnitudes of less 
precipitation (Keener et al. 2012). 
 
 
2.3.3. Central South Pacific: American Samoa 
2.3.3.1. Temperature 
Average air temperatures in American Samoa are tropical, ranging from about 70-90°F. In the CSP 
sub-region, there is a general warming trend since the 1950s in average, minimum and maximum 
temperatures. The largest observed increase has been in minimum air temperatures, while average 
temperature increases range from 0.27°F to 0.45°F per decade, depending on the island (Australian 
Bureau of Meteorology and CSIRO 2011). Regional analyses of air temperature in Samoa are 
highly variable, but also show a rising trend in maximum air temperatures since 1950 (Young 
2007).  
 
2.3.3.2. Precipitation 
American Sāmoa is warm, humid, and rainy all year. The summer season is long and wet, lasting 
from October to May, and the winter season is only slightly cooler and drier, from June to 
September. Annual mean rainfall at Pago Pago Airport is about 3,048 mm (120 inches), although 
other areas can receive as little as 1,800 mm or as much as 5,000 mm (about 71 to 200 inches) due 
to orographic effect (Izuka et al. 2005). ENSO effects in American Sāmoa and the CSP vary by the 
strength of the particular anomaly event. During strong El Niño events, the monsoon trough is 
pulled northward and the SPCZ moves east-northeast of the Sāmoan region, making it significantly 
drier. In moderate El Niño events, the CSP is more susceptible to tropical cyclone formation and 
passage, and the rainy season tends to initiate earlier and end later. During weak El Niño events, the 
monsoon trough and SPCZ are west of the Sāmoa region. This causes reduced tropical storm 
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activity and conditions that are drier than average. In Āpia, Sāmoa (about 80 km or 50 miles west of 
American Sāmoa), long-term records from 1890 to 2005 show no trend in daily, monthly, or annual 
precipitation (Young 2007; Australian Bureau of Meteorology & CSIRO 2011). 
 
2.3.3.3. Extremes in Precipitation 
Little detailed work has been undertaken examining trends in extreme events in this sub-region. 
Initial analysis of extreme precipitation records has only been done using the Pago Pago airport rain 
gauge, which has the longest period of record and the least missing data in American Sāmoa. Nearly 
all other rain gauges throughout American Sāmoa have been discontinued. Data from the Pago Pago 
Airport gauge show no trend in annual or winter one-day amounts of precipitation above the 95th 
percentile since 1965, and summer one-day amounts show a slight downward trend that is not 
statistically significant (Kruk and Marra 2012). ENSO and tropical cyclones are associated with 
extreme events in the South Pacific Islands. For the Central South Pacific sub-region, tropical 
cyclones occur between November and April; the number of cyclones varies widely from year to 
year but they tend to occur more frequently during moderate-intensity El Niño years and less 
frequently during weak El Niño events. Additionally, Madden-Julian Oscillation (MJO) 
propagation, the major source of intraseasonal variability in the tropical atmosphere, intensifies and 
increases the frequency of tropical cyclones during moderate El Niño events. Lastly, during strong 
La Niña events, the SPCZ lies far southwest of the Sāmoan region, and the risk of tropical cyclone 
development is moderate to high. The frequency of extremely high rainfall events per year has 
remained consistent since 1965 (Kruk and Marra 2012).  
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3. FUTURE REGIONAL CLIMATE SCENARIOS 

As noted above, the physical climate framework for the 2013 NCA report is based on climate model 
simulations of the future using the high (A2) and low (B1) SRES emissions scenarios. The resulting 
climate conditions are to be viewed as scenarios, not forecasts, and there are no explicit or implicit 
assumptions about the probability of occurrence of either scenario. 
 
3.1. Description of Data Sources 

This summary of future regional climate scenarios is based on the global climate model output from 
phase 3 of the Coupled Model Intercomparison Project (CMIP3). Fifteen coupled Atmosphere-
Ocean General Circulation Models (AOGCMs) from the World Climate Research Programme 
(WCRP) CMIP3 multi-model dataset (PCMDI 2012), as identified in the 2009 NCA report (Karl et 
al. 2009) were used: CCSM3, CGCM3.1 (T47), CNRM-CM3, CSIRO-Mk3.0, ECHAM5/MPI-OM, 
ECHO-G, GFDL-CM2.0, GFDL-CM2.1, INM-CM3.0, IPSL-CM4, MIROC3.2 (medres), MRI-
CGCM2.3.2, PCM; UKMO-HadCM3, and UKMO-HadGEM1. The spatial resolution of the great 
majority of these model simulations was 2-3° (a grid point spacing of approximately 100-200 
miles), with a few slightly greater or smaller. All model data were re-gridded to a common 
resolution before processing (see below). The simulations from all of these models include: 
a) Simulations of the 20th century using best estimates of the temporal variations in external 

forcing factors (such as greenhouse gas concentrations, solar output, volcanic aerosol 
concentrations); and 

b) Simulations of the 21st century assuming changing greenhouse gas concentrations following 
both the A2 and B1 emissions scenarios. The UKMO-HadGEM1 model did not have a B1 
simulation. 

 
CMIP3 multi-model mean analyses are provided for the periods of 2021-2050, 2041-2070, and 
2070-2099, with changes calculated with respect to the historical climate reference period of 1971-
2000. These future periods will be denoted in the text by their mid-points of 2035, 2055, and 2085, 
respectively. To produce the multi-model mean maps, each model’s data is first re-gridded to a 
common grid of approximately 2.8° latitude (~190 miles) by 2.8° longitude (~130-170 miles). Then, 
each grid point value is calculated as the mean of all the available models’ values at that grid point. 
Finally, the mean grid point values are mapped. This type of analysis weights all models equally. 
Although an equal weighting does not incorporate known differences among models in their fidelity 
in reproducing various climatic conditions, a number of research studies have found that the multi-
model mean with equal weighting is superior to any single model in reproducing the present day 
climate.
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3.2. Mean Temperature 

Figure 13 shows the spatial distribution of multi-model mean simulated differences in average 
annual temperature for Hawai‘i, for the three future time periods (2035, 2055, 2085) with respect to 
1971-1999, for both emissions scenarios, for the 14 (B1) or 15 (A2) CMIP3 models. The statistical 
significance regarding the change in temperature between each future time period and the model 
reference period was determined using a 2-sample t-test assuming unequal variances for those two 
samples. For each period (present and future climate), the mean and standard deviation were 
calculated using the 29 or 30 annual values. These were then used to calculate t. In order to assess 
the agreement between models, the following three categories were determined for each grid point, 
similar to that described in Tebaldi et al. (2011): 

• Category 1: If less than 50% of the models indicate a statistically significant change then the 
multi-model mean is shown in color. Model results are in general agreement that simulated 
changes are within historical variations; 

• Category 2: If more than 50% of the models indicate a statistically significant change, and less 
than 67% of the significant models agree on the sign of the change, then the grid points are 
masked out, indicating that the models are in disagreement about the direction of change; 

• Category 3: If more than 50% of the models indicate a statistically significant change, and more 
than 67% of the significant models agree on the sign of the change, then the multi-model mean 
is shown in color with hatching. Model results are in agreement that simulated changes are 
statistically significant and in a particular direction. 

 
It can be seen from Fig. 13 that all three periods indicate an increase in temperature compared to 
1971-1999, a continuation of the upward trend in mean temperature in the region over the last 
century. There is little or no spatial variation, especially for the A2 scenario. On a temporal scale, 
warming increases over time, and also increases between B1 and A2 for each respective period. For 
2035, values for both emissions scenarios range between 1 and 2°F. For 2055, warming in B1 
ranges over 1-3°F and for A2, ranges from 2 to 3°F. Increases by 2085 are larger still, with a 2-3°F 
range for B1 and a 4-5°F range for A2. The CMIP3 models indicate that temperature changes across 
Hawai‘i, for all three future time periods and both emissions scenarios, are statistically significant. 
The models also agree on the sign of change, with all grid points satisfying category 3 above, i.e. 
the models are in agreement on temperature increases throughout the region for each future time 
period and scenario. 
 
Global CMIP3 analyses from IPCC (2007a) indicate a robust pattern of warming over the Pacific 
between the late 20th century and late 21st century, which is larger near the equator and smaller in 
the subtropics.  
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Figure 13. Simulated difference in annual mean temperature (°F) for Hawai‘i, for each future time period 
(2021-2050, 2041-2070, and 2070-2099) with respect to the reference period of 1971-1999. These are multi-
model means for the high (A2) and low (B1) emissions scenarios from the 14 (B1) or 15 (A2) CMIP3 global 
climate simulations. Color with hatching (category 3) indicates that more than 50% of the models show a 
statistically significant change in temperature, and more than 67% agree on the sign of the change (see text).   



 
 29 

3.3. Mean Precipitation 

The CMIP3 spatial distribution of multi-model mean simulated differences in average annual 
precipitation for Hawai‘i is shown in Fig. 14, for the three future time periods (2035, 2055, 2085) 
with respect to 1971-1999, for both emissions scenarios, for the 14 (B1) or 15 (A2) CMIP3 models. 
Generally, there is a south-north gradient in changes. Despite a downward trend over the last 
century, by 2085 the southern parts of the region show relatively large increases while the northern 
areas show only slight decreases. This gradient increases in magnitude as time progresses for both 
scenarios The weakest spatial differences occur for the B1 scenario in 2035, with decreases of 
between 0 and 2% across the entire region. The agreement between models was once again assessed 
using the three categories described in Fig. 13. It can be seen that for all scenarios the changes in 
precipitation are not statistically significant for most models (category 1) over all grid points. This 
means that most models are in agreement that any changes will be smaller than the normal year-to-
year variations that occur. For the A2 emissions scenario in 2085, the models are also in 
disagreement about the sign of the changes (category 2) over a large portion of the region. 
 
Figure 15 shows some preliminary results analyzing the CMIP5 projections, in this case focusing on 
simulations with a single model (the GFDL CM3). Shown are time series of mean rainfall in the wet 
season each year averaged over a tropical Western Pacific region (June-September) and over a 
region around Hawai‘i (December-March). Results are from a single realization forced with 
observed greenhouse gas concentrations from 1860 to 2005 and with projected concentrations using 
the CMIP5 RCP8.5 scenario through 2100. Considerable variability on interannual to interdecadal 
timescales is evident in both the Western Pacific and Hawaiian regions. However a clear tendency 
for increased wet season rainfall in the West Pacific as the climate warms is apparent even from this 
single realization, particularly in the projection for later in the present century.  
 
Previous CMIP3 multi-model analyses from IPCC (2007a) show increases in precipitation along the 
equator and decreases over much of the subtropics, between the late 20th and 21st centuries. This 
basic pattern where “wet regions get wetter” under global warming has been explained as a result of 
increased moisture convergence due to higher absolute atmospheric humidity in the warmer climate 
(e.g., Held and Soden 2006), although Xie et al. (2010) show the importance also of changing 
spatial gradients in the SST in modifying the rainfall over the oceans at tropical and subtropical 
latitudes. 
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Figure 14. Simulated difference in annual mean precipitation (%) for Hawai‘i, for each future time period 
(2021-2050, 2041-2070, and 2070-2099) with respect to the reference period of 1971-1999. These are multi-
model means for the high (A2) and low (B1) emissions scenarios from the 14 (B1) or 15 (A2) CMIP3 global 
climate simulations. Color only (category 1) indicates that less than 50% of the models show a statistically 
significant change in precipitation. Whited out areas (category 2) indicate that more than 50% of the models 
show a statistically significant change in precipitation, but less than 67% agree of the sign of the change (see 
text).   
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Figure 15. Time series of mean rainfall in the wet season each year averaged over a tropical Western Pacific 
region (June-September, top) and over a region around Hawai‘i (December-March, bottom). Results are 
from a single realization forced with observed greenhouse gas concentrations from 1860 to 2005 and with 
projected concentrations using the CMIP5 RCP8.5 scenario through 2100. Figure courtesy of H. Annamalai 
and M. Mehari, based on data from the World Climate Research Programme's Working Group on Coupled 
Modelling CMIP5 project. 
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Hawai‘i represents a particular challenge for numerical modeling, and very fine resolution is 
necessary to resolve the fine-scale geographical variations. These include valleys and ridges, as well 
as broad and steep slopes, which give the Hawaiian Islands a diversity of climates that are quite 
different from that over the surrounding oceans. The microclimates in the Hawaiian Islands range 
from humid and tropical on the windward flanks to dry leeward areas. As a result, an approach now 
being aggressively pursued for climate simulations for Hawai‘i (that will be applied to the other US-
API as well) is the ability to explicitly simulate the regional atmospheric circulation at small scales. 
Such simulations may either embed a fine resolution limited-area model within a much coarser 
resolution global model (e.g., Giorgi and Francisco 2000) or may use global atmospheric models 
with stretched grids that enable much finer resolution over some particular region (e.g., Fox-
Rabinovitz et al. 2006; Lal et al. 2008). This approach has the advantage of being physically-based 
and not needing assumptions about the relevance of present day empirical relationships to future 
climate. The disadvantages include a typically heavy computational burden for such calculations 
and the inevitable inconsistency between the simulated flows on the coarse and fine resolution 
components of the grid. Some previous simulations of atmospheric flow over the Hawaiian Islands 
have used horizontal grid spacings as small as 1.5 km, but these have been for short-term (a few 
days or less) simulations (e.g., Zhang et al. 2005a,b), or at most for seasonal forecasts (Nguyen et 
al. 2010). Such simulations showed great improvement over those at 10 km resolution. 
 
A current project at the International Pacific Research Center (IPRC) is applying the Advanced 
Research Weather Research and Forecasting (WRF-ARW) model to climate simulations in Hawai‘i, 
which will soon provide high-resolution regional model climate simulations using boundary 
conditions taken from CMIP3 and CMIP5 global simulations. The simulation of the trade wind 
boundary layer regime has been a particular challenge for numerical models (e.g., Wyant 2010; 
Zhang et al. 2011), but the recent success reported by Zhang et al. (2011) in this regard, using a 
modified version of the WRF-ARW model, underpins the current effort toward a very fine 
resolution Hawai‘i climate simulation (Zhang et al. 2012). Preliminary results for rainfall over the 
islands in a simulation of the year 2006 driven by observed SSTs and lateral boundary conditions 
are shown in Fig. 16. This simulation used a nested grid with a 3-km horizontal resolution in the 
inner grid covering the main Hawaiian Islands and adjacent ocean areas.   
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Figure 16. Monthly rainfall over the main Hawaiian Islands from a one-year simulation with the regional 
WRF-ARW model, as described in Zhang et al. (2012). Results from two versions of the model are shown in 
the middle and lower rows. Observations in the top row are objective analyses based on rain gauge 
observations at a large number of stations. Results for November 2005, March 2006, and August 2006 are 
shown (Keener et al. 2012).  
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3.4. Model simulations relating to ENSO 

The tropical Pacific is notable for the large interannual variability of SST gradients and overlying 
surface winds connected with the El Niño-Southern Oscillation (ENSO) phenomenon. Seasonal 
rainfall over the Pacific islands is strongly affected by the phase of ENSO, and this suggests that 
long term changes in the Pacific basin-scale SST gradients and the overlying atmospheric 
circulation will play a key role in determining the mean rainfall changes on each of the islands. The 
2007 IPCC report included an analysis of simulations of late 21st century changes in Pacific basin-
scale behavior from 16 coupled models (Fig. 17). Overall the analysis suggested that 13 of the 
models predicted a mean weakening of the zonal SST gradient and an associated weakening of the 
atmospheric circulation. The authors reported this result as a projected trend to more “El Niño-like” 
mean conditions in the future (although note that DiNezio et al. (2009) demonstrate the limitations 
of trying to characterize the mean changes in the tropical Pacific as simply “El Niño-like” or “La 
Niña-like”). A more recent analysis of simulations from 21 global models by Power and Kociuba 
(2011) also shows an overall trend of weakening SST gradients and atmospheric circulation. 
 
Interpreting such model results for simulated trends has been complicated by somewhat confusing 
results concerning the historical long-term trends in equatorial Pacific SST and overlying 
atmospheric circulation. Two prominent gridded SST products from the UK Hadley Centre (Rayner 
et al. 2003) and NOAA (Smith et al. 2008) actually indicate rather different trends over the 20th 
century in the tropical Pacific (Vecchi et al. 2008). Different atmospheric data sources also appear 
to provide somewhat contradictory results for 20th century trends in the Pacific. Standard 
atmospheric reanalyses and some studies with atmospheric models forced with observed SSTs 
suggest an intensification of the atmospheric circulation (Chen et al. 2008; Sohn and Park 2010; Yu 
and Zwiers 2010; Meng et al. 2011), while surface pressure and cloudiness reconstructions 
appear to be consistent with a modest weakening of the atmospheric circulation (Deser et al. 2010; 
Power and Kociuba 2011). 
 
Recently the situation has improved with an increased understanding that the available historical 
data sets are affected by spurious trends introduced by changes in ship-based observations. Recently 
Tokinaga and Xie (2011) and Tokinaga et al. (2011) have made careful corrections for these trends, 
and have shown that the various observational data sets are indeed consistent with a slow 
weakening of the atmospheric circulation overlying much of the tropical Pacific during the 20th 
century. Certainly this is one aspect where progress has been made since the 2007 IPCC Report, and 
this new understanding will provide important context for modeling of climate trends in the Pacific 
region (Irving et al. 2011).   
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Figure 17. Analysis of the simulated SST in the tropical Pacific in the late 21st century relative to that in the 
late 20th century in 16 global climate models. Changes in the amplitude of ENSO cyclic variations are 
plotted on the vertical axis, and a measure of changes in the mean SST gradients are indicated on the 
horizontal axis. The models show no pattern of agreement even on the sign of the change in strength of future 
ENSO oscillations, but most of the models agree in simulating a weakening of the mean gradients, which was 
interpreted roughly as a trend towards mean "El Niño-like" conditions. From IPCC AR4, Section 10.3.5.3, 
Figure 10.16, Meehl et al. (2007). 
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4. SUMMARY 

The primary purpose of this document is to provide selected physical climate information 
(concentrating on some primary atmospheric variables such as temperature and precipitation) for 
potential use by the authors of the 2013 National Climate Assessment report. The document 
contains two major sections. One section summarizes historical conditions in the Pacific Islands and 
primarily focuses on trends in temperature and precipitation metrics that are important in the region. 
A more thorough set of climate information for the region is provided in the soon to be published 
Climate Change and Pacific Islands: Indicators and Impacts Report for the 2012 Pacific Islands 
Regional Climate Assessment (PIRCA)3 report which takes a more holistic view of climate in a 
unique region such as this. The PIRCA report goes much further in-depth with respect to such 
factors as sea-level rise and inundation, ocean acidification, the unique nature of hydrology and 
associated freshwater concerns in the islands, as well as the impacts to the unique and varied 
ecosystems across the region. 
 
The second section summarizes climate model simulations for two scenarios of the future path of 
greenhouse gas emissions: the IPCC SRES high (A2) and low (B1) emissions scenarios. These 
simulations incorporate analyses from multiple sources, the core source being Coupled Model 
Intercomparison Project 3 (CMIP3) simulations. 
 
The resulting climate conditions are to be viewed as scenarios, not forecasts, and there are no 
explicit or implicit assumptions about the probability of occurrence of either scenario. The basis for 
these climate scenarios (emissions scenarios and sources of climate information) were considered 
and approved by the National Climate Assessment Development and Advisory Committee. 
 
Some key characteristics of the historical climate include: 
 
• Climatic phenomena that have major impacts on the Pacific Islands include tropical cyclones, 

the El Niño-Southern Oscillation, drought, and variations in the position and strength of the 
trade winds and intertropical convergence zone. 

• Average annual temperature has generally increased over the past 50-90 years. In Hawai‘i, high 
elevation stations have been warming faster than low elevation stations over the past 30 years. 

• There is a decline of northeast trade-wind frequency in Hawaii since 1973 and the frequency of 
trade-wind inversions in Hawai‘i has increased over the past 20 years. 

• Precipitation has trended downward over the past 100 years in Hawai‘i. In the western Pacific, 
stations west of 150°E have become wetter while stations east of 150°E have been trending 
towards drier conditions. 

• Hawai‘i has experienced a trend toward increasing drought during the winter rainy season. 
 
The climate characteristics simulated by climate models for the two emissions scenarios have the 
following key features: 
 

                                                       
3 Report is available at http://www.cakex.org/NCAreports and http://www.islandpress.org/NCAreports. 

http://www.cakex.org/NCAreports
http://www.islandpress.org/NCAreports
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• All three future time periods indicate an increase in temperature. Spatial variations are very 
small. 

• Changes in precipitation are mixed. For Hawai‘i, decreases in precipitation are simulated for the 
northern islands under the B1 scenario and during the early period under the A1 scenario. 
Increases are simulated for the southern islands under the A2 scenario. However, none of the 
changes are statistically significant. 

• The occurrence of tropical cyclones across the Pacific is consistent with findings of decreased 
activity over the past 20 years, with indications that there is an increase in the occurrence of 
major storms over that same time period as well. 

• Most models simulate a weakening of the east-west sea surface temperature gradient along the 
equator and an associated weakening of the wind patterns, which has been characterized as a 
shift to more El Niño-like conditions. 
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